Blind SQL Injection

Automation Techniques

S22
Black Hat Briefings USA
2004

Cameron Hotchkies
cameron@0x90.org

=N



What is SQL Injection?

e Client supplied data passed to an

application without appropriate
data validation

e Processed as commands by the
database

=N



Frequently Used To:

e Perform operations on the
database

e Bypass authentication mechanisms

e Read otherwise unavailable
information from the database

e Write information such as new
user accounts to the database

H(qﬂ oy
L



Three Forms of SQL Injection

e There are three main forms of SQL
Injection used to read information
from a database
— Redirection and reshaping a query
- Error message based
- Blind Injection

=N




Blind SQL Injection

e Blind SQL Injection techniques can
include forming queries resulting in
boolean values, and interpreting the
output HTML pages

e SQL Injection can result in significant
data leakage and/or data modification
attacks

e Blind attacks are essentially playing 20
questions with the web server

H(qﬂ oy
L




Why focus on Blind
Injections?
e Blind injections are as common as

any other injection

¢ Blind holes involve a false sense of
security on the host

e Requires a larger investment of
time to execute manual
penetration against

H(qﬂ oy
L




Benefits of an Automated Tool

e We can ask the server as many yes/no
questions as we want

e Finding the first letter of a username
with a binary search takes 7 requests

e Finding the full username if it's 8
characters takes 56 requests

e To find the username is 8 characters
takes 6 requests

e 62 requests just to find the username
e This adds up

H(qﬂ oy
L




Benefits Cont’d

e Assuming it takes 10 seconds to

make each request

e Assuming the pentester makes no

mistakes

e The 8 character username takes

over ten minutes

e What if we want the schema or the

entire database?

=N



Benefits Cont’d

o If you want non-trivial penetration
- Table names
— Column names
— Actual Data

e This would take hours or days or

longer depending on the size of
the database

=N




Sound Simple?

An effective tool is more complex than

“a few shell scripts and netcat”

=N




Bob's Bikes! - Mozilla Firefox
File Edit WView Go Bookrmarks Tools Help
@ - -_j: - LLQ | @ ll_“l http://bobsbikes. 0x90. corn: 8080/ cataleg. php?prod_id=2
[May 26, 2004, 21:59:23
-|_1:|_rnd__glesc:|_p_rm_l _p_l'ice:
MENU [Schwinn  [29.25
Eilze Parts!
Bikesl
Bike Requested page: hitp:/fbobsbikes. 0x90.com: 808 0/catalog php Tprod_id=2|
Accesories
Done

BR38R



Enfi's Bikes! - Mozilla Firefon

File Edit Wiew Go Bookrarks Tools Help

é‘ s 'E} > ‘a@ oy @ I|_“| httpi//bobsbikes 0x90,com 8080/ catalog. php?fprod_id=2%20and%201=1
T

Ifay 26, 2004, 2Z2:06:01
‘_p_ru d_desc 'h:_lru d_price
MENU |Schwinn (29,25

Bilke Parts|
Bike

Accesones

Fequested page: http:/fbobsbikes. 0290 con:B080/catalog php?prod_1d="%20and%201=1

Done

BR38R



Bob's Bikes! - Mazilla Firefis
File Edit View So Bookmarks Tools Help '\_‘?
@ - ;‘,,“ - ‘.-.LQ _:,;; @ ll_ul http://bobsbikes 0x90.com: 8080/ catalog.php?prod_id=2%20and%201=0 _‘_’l “Q'
Jour inferner bicycle
Dlay 26, 2004, 22:09:42
Site No rows found
Bike Parts!
Bikes|
Bike Eecuested page: http//bobsbikes. 0290 com:8080/catalog php Tprod 1d="%20and%:201=0
= s e sl i = 5 e o Lot iz s ot s S i ot e e :
Done

BR38R



Searching for Integers

Select a range (usually starting with 0)

Increase value exponentially by a factor
of two until upper limit is discovered

Partition halfway between upper limit
and previous value

Continue to halve sections until one
value remains

=N




Problem

e How do we recognize true vs false pages
from the web server?
- We take pattern recognition for granted
— Can’t we just do a string compare?

e NOI!

— The whole point of a web application is to
have dynamic content

— It's entirely likely that the section indicating
the true/false is not the only dynamic
content

— String comparison is suitable for error
based injection but not blind injection

] 1

L



Enfi's Bikes! - Mozilla Firefon
File Edit Wiew Go Bookrmarks Tools Help
Q—- - ‘E}" - %LQ |5 @ I|_“| httpi//bobsbikes 0x90,com 8080/ catalog.php?fprod_id=2%20and%201=0
=T
lay 26, 2004, 22:09:42
Site No rows found
Eike Parts!
Bikes!
Bike Eecuested page: http//bobsbikes. 0290 com:8080/catalog php Tprod 1d="%20and%:201=0
Bt s p e itk = b e ot i st s oot 2 el il i o :
Done

BR38R




Solution One: Keyword
Search
e Requires direct intervention of the

USer

e User interaction requires effort to
be expended which is what we are
trying to minimize

=N




Solution Two: MD5 Sum

e Web Applications are designed to
be dynamic

e MD5 causes large output changes
from small input changes

=N




Google vs. Hoogle

BR38R



MD5 Sum Comparison

e MD5 does not handle changes well

e May work on some web
applications, but not
comprehensive

=N



Solution Three: Text
Difference Engine

e Text difference tools are designed
to highlight informational changes
that we are not concerned with.

e A ot of effort is wasted to retain
information that will simply be
discarded.

H(qﬂ oy
L




Solution Four: Parse HTML Tree

e Represent text as html entities in a tree
data structure

e Look for differences in the shape of the
trees

e If only non-markup data is changing,
there will be no way to proceed in
automation

e Easier to implement an xhtml parser
than a realistic html parser

=N




Solution Five: Linear

Representation of ASCII

Sums

333333

BBBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

=N



Signature Comparison

e Generating base cases

— Will need base cases for comparison of
unknowns

- We already know guaranteed true/false
pages

- We have multiple options for known base
cases

e Easiest is 1=1 vs 1=0

http://www.vulnsite.com/catalog.asp?ID=7 AND 1=1
http://www.vulnsite.com/catalog.asp?ID=7 AND 1=0

=N




Value

gnature

Sampl

9888

e Signature Set

faea -

foea -

6a88 -

Sa6a -

4888 -

3064

2088 -

1888 -

=N



Reallstlc Slgnature Set

HHHHH

ﬂﬂﬂﬂﬂﬂ
BBBBBB
ﬂﬂﬂﬂﬂﬂﬂ
Ji&]
HHHHHHH
@

333333

HHHHHH

Al

aaaaaaaaaaaaaa

il

ORET,



Tolerance Band Comparison

e Minor changes in textual content
result in small overall changes in
sum

e Changes still occur

e Allowing for tolerance instead of
exact comparison in sums lessens
false negatives

P2 2 |/ 2

known  “~unknown known

=N




Tolerance Band Comparison

16668 T -
True Signature —#—
Falze Signature —&—
9088 -
8088 -

Faea -

6088 [

heea -

4888 -

ature Yalue w/ 18% Tolerance

Joaaa

5ign

2088 -

1888 -

a ] 1a 15 20

=N




Shortcomings of Tolerance
Band Comparison

e It works, but there are a lot of
unnecessary comparisons

e Doesn’t take advantage of known
garbage data

=N




Subtractive Filter

e We can identify sums that are equal between
conflicting base cases

b | =

-l



Subtractive Filter

e This can be combined with the tolerance band
to eliminate unnecessary comparisons

25358 5]
ﬁ%%z

e%éé%%év
O, T S
S IR

o 4

=N



Adaptive Filter

e Allows the application to be
profiled before testing against
unknowns

e Removes junk data that could
skew results

e Requires multiple base cases

=N



Two “Identical” Samples

e i

i

b ld.

ORI

vt |
5 e N
]

R o o g i

ol W
A.A“ “‘:

A Y]
Y0
m};;;;-m;ykﬁ

aciacwss
e

556

S M
v

\\1 — 1II VS \\2 — 2[’

=i

— . R

=B



Adaptive Filter Applied

N Y e T r ¥ e T T o
ol AP ] LAY 4
3029 23029

055
7. B

o ]

55
2
55
25
&
505
25

52
&
26
e
3
2
55
ete

YO0
e
by

\\1 — 1II VS \\2 — 2[’

H(qﬂ oy
L



Benefits of Adaptive Filter

e Tolerance is mostly unnecessary at
this point

e Removes most dynamic content
unrelated to the data leakage

=N




SQueal

SQueal was created alongside the
research being presented
Written in C# for Windows & Linux

- Both Windows.Forms & Gtk-Sharp GUIs
available

Free for non-commercial use

- Black Hat Conference CDs include a
commercially licensed version (Free for you)

Exports data to an XML format for nice
presentation to clients/PHBs

S =1

L



SQueal: Exporting Data

¢ SQueal uses it's own XML format for
saving exploit data

<SQueal.data version="0.0la">

<target address="vulnerable.org:8080/test.php" method="GET"
ssl="False">

<parameter name="prod id" value="2" injectable="True" />
</target>

<attackvector name="prod id" buffer="2" type="BlindTSQLInjection">
<truepage>
<signature-item>3029</signature-item>
<signature-item>3897</signature-item>
<signature-item>572</signature-item>

=N




Gathering Table Info

We start with the ID number for each table:

. AND (SELECT COUNT (name) FROM sysobjects WHERE
xtype=char (85)) > search value

. AND (SELECT MIN(i1id) FROM sysobjects WHERE
id > prev table id AND

xtype=char (85)) > search value

=N




More Table Info

We can now retrieve each table’s
recognizable name

. AND (SELECT TOP 1 LEN (name) FROM sysobjects
WHERE 1d= table id AND

xtype=char (85)) > search value

.. AND (SELECT ASCII (SUBSTRING (name,
character counter ,1)) FROM sysobjects WHERE
id=table id) > search value

b | =

-l




Gathering Field Information

Once we have the table information, we
can move on to the fields

. AND (SELECT COUNT (name) FROM syscolumns
WHERE 1d=table id) > search value

. AND (SELECT MIN(colid) FROM syscolumns
WHERE colid > prev colid AND id=table id)

> search_value

=N




Field Info Cont’d

AND (SELECT TOP 1 LEN (name) FROM sysobjects
WHERE id=table id AND colid=colid) > search value

AND (SELECT ASCITI (SUBSTRING (name,
character counter, 1)) FROM syscolumns WHERE
id=table id AND colid=colid) > search value

AND (SELECT TOP 1 (xtype) FROM syscolumns
WHERE id=table id AND colid=colid) > search value

=2 | — |

-l




Field Data Types

Gathering field data types is faster, but
requires knowledge the type mapping:

34 | Image 35 | Text

36 | Uniqueldentifier | 48 | TinyInt

52 | Smalllnt 56 |Int

58 | SmallDateTime |59 | Real

60 | Money 61 | DateTime
62 | Float 99 | Ntext

104 | Bit 106 | Decimal
108 | Numeric 122 | SmallMoney
127 | BigInt 165 | VarBinary
167 | VarChar 173 | Binary

175 | Char 189 | Timestamp
231 | NVarChar 239 | Nchar

*Datatype values taken from MSDE

b | =

O R



SQueal: Running Time

e Sample web application resulted in
over 2700 HTTP requests

o If we use the "10 second” estimate
from earlier, this would have taken
over 7.5 hours non-stop

e A real production database would
be even larger and longer

H(qﬂ oy
L




Shortcomings / Mitigations

e User-Agent

e Noise generation / Server log DoS

e HTML Sums can be poisoned with
random seeds

e Doesn’t “lower the bar” for finding
exploits

e Troubles with no carriage returns /
auto generated HTML

H(qﬂ oy
L




Forced CRLF

e What happens when HTML is
generated without carriage
returns?

- Natural tendency to force carriage
returns

— This will throw off the data

e At this point, an HTML parser
would be needed

=N




Conclusion

Same techniques can be utilized with queries indicating
invalid SQL

- Treat these as questions such as “Is this syntax
valid?” which in now a yes/no question

MD5 Bad for these purposes

Same techniques can be utilized in other applications to
interpret results from HTML responses

— XPath Injection
— LDAP Injection

Use Parameterized code in an appropriate fashion to
call stored procedures

b | =

-l



References & Suggested
Papers

Advanced SQL Injection in SQL Server Applications
[Chris Anley, NGS Systems]

http://www.nextgenss.com/papers/advanced_sql_injection.pdf

(more) Advanced SQL Injection
[Chris Anley, NGS Systems]

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

Blind SQL Injection: Are your web-apps Vulnerable?

[Kevin Spett, SPI Dynamics]
http://www.spidynamics.com/whitepapers/Blind_SQLInjection. pdf

b | =

-l



Questions & Answers

This, and other tools are available
for download at:

http://www.0x90.0rg/releases/

=N




